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Abstract: The sensitivity of optical coherence tomography images to 

sample morphology is tested by two methods. The first method estimates 

the attenuation of the OCT signal from various regions of the probed tissue. 

The second method uses a box-counting algorithm to calculate the fractal 

dimensions in the regions of interest identified in the images. Although both 

the attenuation coefficient as well as the fractal dimension correlate very 

well with the anatomical features of the probed samples; the attenuation 

method provides a better sensitivity. Two types of samples are used in this 

study: segments of arteries collected from atherosclerosis–prone Watanabe 

rabbits (WHHL-MI) and healthy segments of porcine coronary arteries. 
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1. Introduction 

Atherosclerosis was once exclusively thought of as an occlusive disease where plaque 

accumulation on the arterial walls resulted in the narrowing of the arterial lumen. As our 

knowledge of atherosclerosis evolves, interest has shifted from the simple model of luminal 

narrowing towards complex biological processes occurring under the luminal surface. This 

interest induced the need for novel techniques able to image beneath the luminal surface of the 

artery. Optical coherence tomography (OCT) seems to be a natural candidate for imaging 

structures located under the luminal surface. OCT has an axial resolution that is determined by 

the coherence length of the light source, which usually is less than 10 µm. Micrometer range 

resolution allows for the investigation of morphological details within the arterial wall not 

resolved by other techniques currently used for vascular imaging. Although a lot of 

information can be extracted from the visual inspection of an OCT image there is a need to 

analyze the data beyond the raw information provided by a simple image. Usually, visual 

inspection of an OCT image is a subjective procedure which is limited when there are small 

differences in the optical refraction indexes of various arterial components. For such cases, 

reliable quantitative parameters need to be identified in order to improve the sensitivity and 

the specificity in detecting and distinguishing vascular pathologies. There are two types of 

parameters that are the focus of this study. The first parameter considered is the attenuation of 

the OCT signal through various regions of interest (ROIs) within the probed samples. The 

other parameter class consists of the calculated fractal dimensions of recorded signal texture 

from ROIs within OCT images. The samples used for this study are segments of left 

descending coronary arteries harvested from healthy pigs and the descending aorta from 

atherosclerosis–prone Watanabe heritable hyper-lipidemic (WHHL-MI) rabbits [1]. 

2. Swept-source optical coherence tomography system and image acquisition 

The OCT images for this study were acquired using a 3x3 Mach-Zehnder quadrature 

interferometer with a swept-source. The system has been described in detail elsewhere [2]. 

The swept source (HSL2000, Santac) has a central wavelength of 1320 nm and a full scan 

wavelength range of 110 nm. Its coherence length (in air) is 7 µm. The light exiting the 

sample arm was focused onto the sample through ball-lens single mode fibers whose design 

and fabrication were described in a previous publication [3]. The whole probe head ensemble 

had the following specifications: working distance 1.1 mm, depth of field 0.9 mm and spot 

size 28.2 µm. The total optical power illuminating the sample was approximately 5 mW. The 

balanced detection output is recorded with a digitizer (Alazartech) at a 100 MHz sampling 

rate. After the records were re-sampled to equal frequency intervals, an inverse Fourier 

transform was performed. The end result was a depth profile (A-scan), which is the 

dependence on depth of the sample reflectance. The standard OCT image (B-scan) used for 

this study contains 900 A-scans, which amounts to a scanning width of 3 mm. Overall, the 

Mach-Zehnder OCT system had a measured sensitivity of 107 dB. There is an exponential 

falloff of sensitivity with depth for the swept source which is related to the limited 

instantaneous lineshape of its laser [4]. This effect can be explained as a decreasing visibility 

of the higher frequency fringes which are back-reflected from deeper locations within the 

sample. The sensitivity falloff parameter is defined as the position where the sensitivity 

decreases by 6 dB and the measured sensitivity falloff of the home-built OCT system used in 

this report was 2.8 mm. Since the measured sensitivity falloff of our system was larger than 

the investigated ROI depths, there was not necessary to take into consideration this effect 

when analysis of OCT data acquired during this investigation was performed. 
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3. Sample preparation and image acquisition 

Segments of artery were snap-frozen immediately after they were harvested and stored at −80◦ 

C until the time of imaging. The acquisition of OCT images was conducted at room 

temperature after samples were allowed a short period of thawing also at room temperature. 

We have investigated two types of arterial tissues: one type harvested from healthy pigs and 

the other from atherosclerosis–prone Watanabe (WHHL-MI) rabbits. This type of rabbit 

spontaneously develops atherosclerotic plaques resembling key aspects of the human clinical 

condition [1]. Testing was carried out in two geometries: one with the lumen side and the 

other with the external adventitia exposed to the probing beam, respectively. For the first 

testing geometry, the arterial samples were cut open along the direction of blood flow. For the 

second testing geometry the arterial samples were not cut open. In this case samples had their 

serosa and adventitia layers exposed directly to the probing beam and the collapsed lumen 

could be identified in the OCT images. 

An example of an OCT image collected from a portion of porcine coronary left 

descending artery shown in Fig. 1. This sample has the lumen surface exposed to the OCT 

probing beam. Detailed anatomical features of the artery are clearly displayed; starting from 

the top of the image, the intima, media and adventitia are resolved. This OCT image (i.e. B-

scan) is composed from a number of 900 A-scans, which amount to a 3-mm physical width on 

the scanned sample. Correspondingly, the depth of the image (i.e. the vertical size) is about 

1.5 mm. 

 

Fig. 1. An OCT image of a segment of an asymptomatic porcine artery. Starting from the top, 

the intima, media and adventitia layers can be distinguished in this image. There are a total of 

900 A-scans composing the image. The image size is 1.5 (depth) x 3 mm2. The arrow indicates 

the position of the 150-th A-scan, which is used as an example in Fig. 2. The straight line 

observed above the sample surface in the OCT image marks the air/isotonic saline interface. 

4. Attenuation of the OCT signal 

As light penetrates into the artery, the OCT signal is increasingly attenuated due to the overall 

effect of scattering, absorption, modification of the polarization state of the probing light and 

coherence loss. The rate of attenuation of the OCT signal while it propagates within the 

sample is potentially a parameter of interest because tissues with different optical properties 

attenuate the OCT signal differently [5]. In an individual A-scan the recorded signal is very 

noisy, as it can be seen in Fig. 2, which displays the 150-th A-scan from OCT image shown in 

Fig. 1. Therefore, the determination of changes in the attenuation rate along the depth profile, 

which mark signal propagation from one type of tissue to another, would be very problematic. 

A noisy A-scan profile is a common feature for OCT measurements probing highly scattering 

environments. It is attributable to the random distribution of discrete scattering centers along 

the depth probed by the light, to the speckle noise generated by multiple scattering of light, 

and to the electronic noise plaguing the detection system [6,7]. 
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Fig. 2. An example of an A-scan, i.e. the reflectivity profile versus depth. The A-scan profile is 

noisy and does not allow for a reliable estimation of its attenuation with depth. The arrows 

mark the portion of the A-scan section selected in Fig. 4. 

In order to overcome this problem and to obtain a smooth profile that ensures a reliable 

estimation of an attenuation coefficient, a summation of adjacent A-scans had to be performed 

thus obtaining a compounded profile. In an OCT system the detection is based on light 

interference therefore the signal is coherent. By adding a number N of un-correlated adjacent 

A-scans the signal part carrying genuine information from the sample (i.e. signal generated 

through a single light back-scattering event) is increased N times, while the part of the signal 

generated from coherent speckle noise increases only by N
1/2

 [8,9]. Therefore, in a 

compounded profile the amount of coherent noise decreases with respect to the amount of 

information-carrying signal. 

The compounded profile derived from this summation procedure as applied to the A-scans 

that compose the OCT image from Fig. 1 is demonstrated in Fig. 3. Now, the interfaces which 

separate various layers in the OCT image are easily observed in the compounded profile and 

are marked by reflectivity peaks followed by changes in the slope of the profile. The 

parameters of interest are the attenuation coefficients along various sections of the 

compounded profile. Based on the single scattering model their values can be calculated by 

numerically fitting the distinct sections of the compounded profile with exponential-like 

functions. The procedure used was similar with one of the numerical models described in 

reference [10]. Each selected portion of compounded profile was independently fit with a 

simple exponential function. There were two free parameters used for fitting: a free multiplier 

and the attenuation rate of the signal along the selected portion of the compounded profile. 

Only fits with correlation factors R
2
 higher than 0.85 were considered reliable and used in this 

report. Graphic exemplification of this procedure is displayed in Fig. 3 where straight lines 

indicate various portions of the profile which were independently fit with exponential 

functions. 
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Fig. 3. Compounded profile corresponding to the OCT image from Fig. 1. Numerical fits 

corresponding to different layers are also shown. 

By applying the signal attenuation method, features which were not clearly evident in the 

initial OCT images were identified. For example, in the medial layer of the porcine artery we 

identified two sub-layers each bearing its own class of attenuation coefficients. The change in 

the attenuation of the OCT signal was attributed to a change in the orientation of the elastin 

fiber bundles in the medial layer [11]. It is known that the wall of a healthy artery has a well 

ordered elastin fiber network that imparts elasticity to the vessel allowing it to contract and 

expand during the cardiac cycle. This leads to a directional anisotropy of the optical properties 

of the medial layer of the porcine coronaries, which is reflected in the attenuation of the OCT 

signal. These types of morphological-induced optical anisotropies in arterial tissues could be 

also emphasized through polarization-sensitive OCT [12]. 

The media layer sections that showed different elastin fiber orientation could not be easily 

differentiated by a visual examination of the OCT image. However, the two sub-sections of 

the media layer in the porcine left descending coronary arteries were made evident and 

quantifiable by measuring the attenuation coefficient of the compounded signal. The average 

values obtained for the attenuation coefficients of the OCT signal propagated through the 

media were as follows (starting from the sub-layer that borders the tunica intima): 4.60 ± 0.29 

mm
−1

 and 5.63 ± 0.05 mm
−1

 (when the scanning occurs along the direction of blood flow), and 

1.59 ± 0.19 mm
−1

 and 8.31 ± 0.09 mm
−1

 (scanning perpendicular to the flow). Meanwhile, the 

media sub-layers were not visible in the OCT images acquired from the WHHL-MI rabbit 

arteries but they were signaled by the attenuation coefficients of the corresponding 

compounded profiles. For this class of samples, when the scanning occurs perpendicular to the 

direction of blood flow the following values are obtained for the attenuation of signal 

propagating through the media sub-layers: 1.77 ± 0.02 mm-1 (sub-layer adjacent to the tunica 

intima) and 2.38 ± 0.04 mm-1 (sub-layer adjacent to adventitia). Unlike the media, the 

adventitia layer has a homogeneous structure characterized by single OCT signal attenuation: 

1.19 ± 0.02 mm
−1

 (porcine, scanned along the blood flow), 1.36 ± 0.03 mm
−1

 (porcine, 

scanned across the blood flow) and 0.81 ± 0.07 mm
−1

 (rabbit, scanned across the blood flow). 

The intima layers were too thin to obtain numerical fits with small errors. 
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5. Fractal analysis: the box-counting method 

Another important feature that could be used to differentiate among various ROI’s that appear 

in an OCT image is the texture of the signal as it was recorded within the image. Texture 

refers to the physical appearance of a region and the signal texture in an OCT image should 

contain information about sample morphology embedded within its speckle. Fractal analysis 

is the method of choice for characterizing textures and one of its variants, the box-counting 

technique, was used in this study to calculate fractal values corresponding to each A-scan 

portion that is part of an ROI. Detailed description of the theoretical background and the 

mathematical algorithms for box-counting fractal analysis are provided elsewhere [13,14]. 

The fractal analysis started by identifying an ROI within an OCT image. Subsequently, the 

box-counting algorithm was used for calculating a fractal dimension corresponding to each A-

scan portion contained within that ROI. As an example, we consider a portion of the A-scan 

shown in Fig. 2. This A-scan portion is detailed in Fig. 4 where it horizontally spans over 64 

pixels corresponding to an optical depth of 275 µm. The location of this portion within the 

initial A-scan is marked with arrows in Fig. 2. The first step in calculating the fractal 

dimension of this A-scan portion was to “cover” it with a uniform set of square boxes, each of 

side length li. Figure 4 shows the case when the A-scan portion of interest was covered with 

20 square boxes, each square being 16 pixels wide (~69 µm’s along the x-axis). The second 

step of the algorithm counts the number of non-empty boxes Ni, i.e. the boxes containing 

signal from the selected A-scan profile. The number of non-empty boxes is ten in the example 

provided in Fig. 4. 
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Fig. 4. The portion from the A-scan shown in Fig. 2 which is contained within the arrows. The 

number of measurement points (pixels) is limited to 64 corresponding to a depth of about 275 

µm. The box size shown in this example is 20 and a number of ten boxes containing signal 

(non-empty) can be counted. This partition corresponds to one point in Fig. 5 describing the 

fractal dimension calculation. 

These two steps were repeated for different box sizes while the box sides were decreased 

each time by a factor of two. The algorithm started with the first box covering the entire 

portion of the A-scan (64 pixels in this example) and continued until the profile was covered 

with two-pixel wide boxes. Two pixels corresponded to a length of ~8.6 µm, which is very 

close to the coherence length of the OCT system. Finally, the box-counting dimension was 

calculated as the slope of the line obtained by fitting the number of non-empty boxes Ni 
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against box side length li on a log–log scale as shown in Fig. 5. The fractal dimension of any 

A-scan profile can be any fractional number between 1, which is the fractal dimension of a 

straight line, and 2, value which constitutes the fractal dimension of a flat plane. 
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Fig. 5. The slope of the linear fit in log-log scale of number of boxes versus box size is the 

fractal dimension. The slope was calculated over six points corresponding to six box sizes from 

2 to 64 pixels. The minimum box sizes was 8.6 µm, which corresponded to the axial (spatial) 

resolution of the OCT image while the maximum box size was defined by the optical width of 

the chosen ROI, 275 µm. 

Two examples of full ROIs are indicated in Fig. 6 by the rectangular contours. Both ROIs 

were selected to cover a depth of 64 pixels (275 µm in the axial direction) and were extended 

to include the whole image width, 900 A-scans in this case. 

 

Fig. 6. An OCT image of a portion of WHHM-LI rabbit artery. The image size is 2 (depth) mm 

x 3 mm (width) or 300 x 900 pixels. The rectangular contours indicate examples of two ROIs 

extending across the whole width of the image, 900 pixels. Each ROI has a depth of 64 pixels 

(275 µm). 

The box-counting algorithm described above provides a corresponding fractal value for 

each A-scan portion contained within a selected ROI. By using ROIs similar to the ones 

selected in Fig. 6, 900 fractal dimensions were obtained for each ROI. In Fig. 7a there is a 

histogram plot of all the fractal values from region A with a corresponding Gaussian 

numerical fit. The bin size used to calculate the distribution of fractal dimension for an entire 

ROI was defined by the maximum standard deviation obtained from all the linear fittings of 

log-log graphs corresponding to all A-scan portions contained within that ROI. The peak of 

the Gaussian fit indicated an average fractal value for that particular ROI while the width of 
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the Gaussian fit could be used as a measure for the homogeneity of the tissue portion covered 

by the ROI (region A in this case). 

Figure 7b was obtained in a similar way for region B, also shown in Fig. 6. Region B has 

the same size as region A but is displaced 64 pixels deeper into the sample. Can be noted that 

the average fractal value (the Gaussian peak) changed from one ROI to the other and, more 

importantly, the Gaussian width decreased in Fig. 7b. This was the result of having different 

OCT signal textures within the two selected ROI’s. The first ROI contains a significant 

portion of empty space, i.e. portion above the sample surface, while the second ROI contains 

mostly signal generated from inside the sample. This example clarifies the potential of using 

the width of the Gaussian fit as a classification tool for the tissue portions covered by various 

ROI’s.. 

 

Fig. 7. (a) The histogram of the fractal dimensions calculated for the region contained within 

the rectangle from Fig. 6 (region A). The histogram is fitted with a Gaussian profile. (b) 

Histogram of the fractal dimension calculated for the ROI obtained after a 64-pixel 

displacement as indicated in Fig. 6 (region B). This histogram is fitted with a Gaussian profile 

narrower than the one from Fig. 7a indicating that within this ROI are less OCT signal texture 

types. 
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For all investigated samples, Gaussian numerical fits were applied to the corresponding 

histograms with correlation factors R
2
 0.93 or higher. For the rabbit arteries, the average 

Gaussian profile peaks occurred at 1.441 (adventitia) and at 1.472 (media). Meanwhile the 

corresponding widths of the Gaussian curves were 0.149 (adventitia) and 0.081 (media), 

values that demonstrated narrow distributions around the central peaks (average fractal 

values) for samples belonging to the same type of tissue, i.e. to either adventitia or media 

layer. Sometimes secondary peaks, three to six times smaller than the amplitude of the main 

peak, appeared in the histograms when a selected ROI was partially covering a location with a 

different signal texture. The same procedure was used to calculate the fractal dimensions in 

the OCT images from the porcine left descending coronaries. The values obtained for the 

average fractal dimensions were 1.194 (the first sub-layer of the media), 1.267 (the second 

sub-layer) and 1.277 (adventitia). The corresponding widths of the Gaussian distributions 

where as follows: 0.085 (the first sub-layer), 0.067 (the second sub-layer) and 0.054 

(adventitia). 

Kotowski investigated the fractal dimension of metallic fractured surfaces and 

demonstrated that the fractal roughness (or dimension) shifts as the length of the surface 

profile increase [15]. By plotting the fractal dimension versus length of the surface profile, he 

found a plateau called the characteristic fractal value. In the case of OCT images, the length 

corresponding to the surface profile is the depth of the A-scan quantity. Since the penetration 

depths of OCT scans are limited, a similar analysis with the one proposed by Kotowski is not 

applicable. This indicates that the characteristic fractal dimension regime may not be reached 

when applying the box-counting method on OCT images. However, in the OCT case, by 

applying the algorithm to A-scans which have the same depths makes the comparison of the 

fractal dimensions obtained for different regions relevant even when the characteristic fractal 

values are not reached. 

6. Conclusion 

Biological and morphological variations in arterial tissues generate changes in the optical 

properties of tissue, such as in light scattering, absorption and refractive index, which in turn 

affect the OCT signal. Detection of this altered signal in state-of-the-art OCT systems leads to 

high-quality OCT images, which capture many of the structural characteristics of the sample. 

Despite the fidelity of images, OCT analysis has to progress beyond the subjective visual 

inspection of high-quality images toward more quantitative methods. Two methods were 

proposed in this report: one based on determining the attenuation coefficient of the OCT 

signal as it propagated within the probed sample and the other based on calculation of average 

fractal dimensions using a box-counting algorithm applied to specific ROIs in OCT images. 

Two types of arterial tissue samples were used in this investigation: healthy porcine left 

descending coronary arteries and pieces of descending aortas harvested from atherosclerosis–

prone Watanabe heritable hyper-lipidemic (WHHL-MI) rabbits. The method based on using 

the attenuation coefficient was not only able to distinguish the gross anatomical features of the 

arterial wall but was also able to point toward more subtle anatomical features not apparent on 

the original OCT images. For example, the two sub-layers of the tunica media where the 

smooth elastin fibers have different orientations could be distinguished based on different 

OCT signal attenuations. In addition, we have shown that the second method, box-counting, 

could provide two parameters suitable to be used fro sample characterization: the average 

fractal value and the width of the Gaussian fit. These parameters could be used for further 

improvement in soft-tissue differentiation. Different fractal dimensions were obtained for 

different layers and sub-layers of the investigated samples. Although more studies are needed, 

there is a strong indication that fractal analysis could be used to further refine the 

classification of various regions within OCT images acquired from anatomically complex 

biological samples. In addition, a procedure which makes use of both methods could be 

envisioned. The box counting method could be used in a preliminary step to identify areas 
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with similar signal textures within OCT images. In a follow-up step, the attenuation 

coefficient for the OCT signal within such a fractal-identified region of interest could be 

extracted. 

#129419 - $15.00 USD Received 1 Jun 2010; revised 9 Jul 2010; accepted 20 Jul 2010; published 26 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 1,  No. 1 / BIOMEDICAL OPTICS EXPRESS  277




